II

Mathematics Paper II

Section 1 · Irrational Numbers

Total: 10
  1. Q1

    5 marks

    a. Without using a calculator or four‑figure tables, simplify (3√5 − √2)/(2√5 + 3√2), leaving your answer with a rational denominator.

    Add solution / teacher notes
  2. Q2

    6 marks

    a. Simplify (3√2 + 1)/(√3 + √6) without using four‑figure tables or a calculator.

    Add solution / teacher notes
  3. Q3

    4 marks

    b. Without using a calculator or a four‑figure table, simplify (5 + √3)/(√7 + √5), leaving your answer with a rational denominator.

    Add solution / teacher notes
  4. Q4

    4 marks

    a. Given that x = 9, y = 4 and z = 3, evaluate √((5y² + y⁰)/(x z⁴)).

    Add solution / teacher notes
  5. Q5

    4 marks

    a. Simplify (√(n³) − √(9n))/√n in its simplest form.

    Add solution / teacher notes
  6. Q6

    4 marks

    b. Without using a calculator or four‑figure tables, simplify √98 · (15√6) / (−√2) to its simplest form.

    Add solution / teacher notes
  7. Q7

    3 marks

    a. Simplify (2 − √7)(2 + √7) without using a calculator or four‑figure tables.

    Add solution / teacher notes
  8. Q8

    4 marks

    a. Simplify (√2 + √3)(√8 − √12) without using a calculator and four‑figure table.

    Add solution / teacher notes
  9. Q9

    5 marks

    b. Express (√3 + 1)/(√3 − 1) with a rational denominator in its simplest form.

    Add solution / teacher notes
  10. Q10

    4 marks

    b. Express 1/(3√2 − 3) with a rational denominator in its simplest form.

    Add solution / teacher notes

Section 2 · Exponential and Logarithmic Functions

  1. Q1

    4 marks

    Given that logac = 0.4475, evaluate loga(a²/c).

    Add solution / teacher notes
  2. Q2

    4 marks

    Without using four-figure tables or a calculator evaluate loga2 − loga6 + loga3.

    Add solution / teacher notes
  3. Q3

    5 marks

    Given that logy864 − logy6 = 2, find the value of y.

    Add solution / teacher notes
  4. Q4

    7 marks

    Solve the equation 22a − 5(2a) + 4 = 0.

    Add solution / teacher notes
  5. Q5

    3 marks

    Given that log105 = 0.6990, without using a calculator or tables, evaluate log102.

    Add solution / teacher notes
  6. Q6

    5 marks

    Solve the equation log7343 = 2x − 5.

    Add solution / teacher notes
  7. Q7

    7 marks

    Simplify (4x × 8x−1) / 32x.

    Add solution / teacher notes
  8. Q8

    4 marks

    Evaluate 2 logaa + 3 loga1 + log2√2.

    Add solution / teacher notes
  9. Q9

    5 marks

    Solve for x if (2x)² − 9(2x) + 8 = 0.

    Add solution / teacher notes
  10. Q10

    5 marks

    Solve the equation log9(27k) = k + 1.

    Add solution / teacher notes
  11. Q11

    3 marks

    Calculate the value of x if 10x = 0.01.

    Add solution / teacher notes

5. Progressions

6. Variations